2002 ANNUAL REPORT ### **Summary** The Columbia River Treaty Hydrometeorological Committee (CRTHMC) was established in September 1968 by the Entities. The Committee is responsible for planning and monitoring the operation of data facilities in accord with the Treaty. It also assists the Entities in matters related to hydrometeorological and water supply forecasting. This report summarizes Committee activities during the 2002 operating year. The current system for data communications and data exchange is described in detail. The Committee's response and action to proposed changes to the hydrometeorological network in 2002 are reported. #### 2002 ANNUAL REPORT ### **Table of Contents** | Summary | | i | |------------------|--|-----| | Table of content | ts | iii | | Acronyms | | V | | Role of the CRT | HMC | 1 | | Committee repo | rts | 1 | | Process to revie | ew proposed changes to the hydrometeorological network. | 2 | | | Communicate with data collection agencies Determine Treaty status of stations subject to | | | Step 3 | operational changes Respond to Data Agencies when a change in station operation affects treaty operations | | | | Document committee work | 4 | | 2002 operating | requirements for Treaty modelsyear | | | Communication | systems | 8 | | | communications systems | 10 | | Data exchan | ge | 11 | |---------------------------------|--|----------------------| | Dai
Met
Sno
Res
BPA | Irly project data reports ly project data reports eorological data reports w data reports ervoir Control Center messages A messages ter supply forecasts | 12
13
13
14 | | Appendix A | Introduction to the Committee terms of reference | 15 | | Appendix B | Terms of reference for the CRTHMC | 19 | | 1 - | General | 19 | | 2 - | Composition of the Committee | 21 | | 3 – | Duties of the Committee | 21 | | Appendix C | Hydrometeorological data networks | 25 | | Appendix D | Models and planning studies | 27 | | Ass | ured Operating Plan | 27 | | Det | ailed Operating Plan | 28 | | Act | ual Energy Regulation | 28 | | Tre | aty Storage Regulation | 29 | | HYI | DSIM | 31 | | Floo | od Control Operating Plan | 31 | | Wat | ter supply forecasting | 33 | | Inflo | ow forecasts | 36 | | Appendix E | Changes to the hydrometeorological network in 2002 | 41 | | Appendix F | Correspondence | 49 | | ESF | versus statistical forecasting procedures | 50 | | | ft study terms of reference | | | Res | ources and scheduling | 53 | #### 2002 ANNUAL REPORT ### **Acronyms** - AEC Actual Energy Capability - AER Actual Energy Regulation - AOP Assured Operating Plan - BC Hydro British Columbia Hydro and Power Authority - BPA Bonneville Power Administration - CBT Columbia Basin Telecommunications - CROHMS Columbia River Operational Hydrometeorological Management System - CRT Columbia River Treaty - CRTHMC Columbia River Treaty Hydrometeorological Committee - CRTOC Columbia River Treaty Operating Committee - CWS Columbia Winter Specified - DOP Detailed Operating Plan - EC Environment Canada - ESA Endangered Species Act - ESP Ensemble (or Extended) Streamflow Prediction - FCOP Flood Control Operating Plan - FRO Fall runoff, used in Libby water supply forecasting procedure - FTP File Transfer Protocol - HYDSIM Hydrologic Simulation model - MSC Meteorological Service of Canada, Environment Canada - MSRM BC Ministry of Sustainable Resource Management - NRCS Natural Resources Conservation Service - NWPP Northwest Power Pool - NWRFC Northwest River Forecast Center, US National Weather Service - NWSRFS National Weather Service River Forecast System - Operating Year October 1 to September 30 (CRTHMC) August 1 to July 31 (CRTOC) - PEBCOM Permanent Engineering Board Engineering Committee - PNCA Pacific Northwest Coordination Agreement - QPF Quantitative Precipitation Forecast - RCS Regional Climate Station - RODS BPA's Real-time Operations Dispatch and Scheduling - SNOTEL SNOwpack TELemetry, NRCS snow pillow and climate data network - SSARR Streamflow Synthesis and Reservoir Regulation hydrologic model - TSR Treaty Storage Regulation study - UBCWM University of British Columbia Watershed Model - USACE US Army Corps of Engineers - USBR US Bureau of Reclamation - WSC Water Survey of Canada, Environment Canada - WSF Water Supply Forecast #### 2002 ANNUAL REPORT #### Role of the CRTHMC The Canadian and United States Entities of the CRT established the CRTHMC in 1968. The mandate of the Committee is primarily to be responsible for ensuring that hydrometeorological data necessary for the planning and operation of Treaty project facilities are collected and communicated to the Entities. The "Introduction to the terms of reference for the CRTHMC", shown in appendix A, gives a brief history of the Committee. Committee terms of reference are included in appendix B. ### **Committee reports** The CRTHMC produced documents that provided catalog listings of Treaty, support, and supplemental stations. These stations are required to plan, monitor, and operate Treaty projects¹. The CRTHMC submitted the first major compilation of network stations to the Entities in 1975, following the construction of Mica Dam. The report, entitled "Columbia River Treaty Hydrometeorological System", was updated in 1980, 1983, 1987, 1989, 1990 and 1992. In 2001, the CRTHMC received PEBCOM approval to replace the production of station catalogues with a new process that would ensure that the integrity of the hydrometeorological network is maintained. This process is described in the next section. It focuses on station closures or changes to station operations to ensure that they do not negatively affect the monitoring, planning, and operations of Treaty facilities. # Process to review proposed changes to the hydrometeorological network The CRTHMC ensures that the integrity of hydrometeorological stations that are required to monitor, plan, and operate Treaty facilities is maintained by following a prescribed process. The process involves several steps, as described below. 2 The Committee's terms of reference, as shown in appendix B, define Treaty, support, and supplemental designations for CRT stations in the hydrometeorological "system". The system, which refers to the network of hydrometeorological stations and not the hydroelectric system, is required to monitor, plan, and operate the Treaty projects. #### STEP 1 COMMUNICATE WITH DATA COLLECTION AGENCIES Each year, the Committee formally reminds each contributing data collection agency or utility to inform the Committee of any impending changes in its operation of hydrometeorologic stations near or within the Columbia River basin. A list of agencies and utilities to be contacted is included in Appendix C. # STEP 2 DETERMINE TREATY STATUS OF STATIONS SUBJECT TO OPERATIONAL CHANGES If informed of a proposed change to the operation of any hydrometeorological station, the Canadian and United States Sections of the Committee both determine if the change affects the ability to monitor, plan, or operate a Treaty facility. Specifically, the Committee will designate a station as Treaty or support if data from it are required: - as input to the AOP - as input to the DOP - as input to TSR studies - as input to HYDSIM - as input to the NWSRFS or UBCWM models for Columbia River subbasins - as input to seasonal water supply forecasting procedures required by the FCOP - to monitor or operate Treaty facilities, including daily and additional seasonal forecasts for Treaty facilities Brief descriptions of Treaty planning processes and models are included in Appendix D. # STEP 3 RESPOND TO DATA AGENCIES WHEN A CHANGE IN STATION OPERATION AFFECTS TREATY OPERATIONS Where a change in the operation of a designated Treaty or support station is proposed, the Canadian and United States Sections of the CRTHMC will explore several options: - If the change in station operation compromises monitoring, planning for, or operating a Treaty facility, the appropriate Section of the Committee will urge data collection agencies on its respective side of the border to continue the current operation of the station. - Where data collection agencies are unable to continue the current operation of a Treaty or support station, the Committee will examine the impact that the proposed station change has on monitoring or operating a Treaty project. The Committee will also examine the practicality of modifying planning models to accept the proposed station change. The impact of the change in operation of the station should not, in the view of the Committee, deteriorate the accuracy of model results significantly. If the change does not significantly affect the ability to monitor, plan, or operate a Treaty facility, the Committee will not object to the proposed change. - Where changes to a Treaty or support station are detrimental to Treaty monitoring, planning, or operations, the CRTHMC will attempt to fund and arrange other resources required to continue the operation of the station. Alternatively, a suitable replacement station may be investigated. #### STEP 4 DOCUMENT COMMITTEE WORK The Committee will document the following: Committee activity during the operating year, which is defined as October 1 to September 30 - changes to the operation of Treaty or support stations proposed within the Committee's operating year - the Committee's response to the proposed changes - resolution of proposed changes to the hydrometeorological network - processes to communicate and exchange hydrometeorological data. # STEP 5 REGULARLY REVIEW HYDROMETEOROLOGICAL DATA REQUIREMENTS FOR TREATY MODELS As required, the Committee will review existing and proposed models used for CRT planning studies and operations to assess
hydrometeorological data requirements. The Committee will recommend preferred daily and seasonal forecasting models to be used in CRT operations to the CRTOC. ### 2002 operating year The 2002 Committee consisted of the following members: | UNITED STATES SECTION | CANADIAN SECTION | |---------------------------------|-----------------------------| | Nancy L. Stephan, BPA Co-chair | Eric Weiss, BC Hydro, Chair | | Rudd A. Turner, USACE Co-chair* | Wuben Luo, BC Hydro, Member | | Peter Brooks, USACE Co-chair* | | • Peter Brooks returned from a one-year sabbatical in January 2002 and resumed his duties as US Section co-chair. The Committee thanks Rudd for his valued contributions while filling in for Peter. The Committee had one teleconference call and one meeting during the 2002 operating year. A teleconference was held on 13 November 2001 to discuss final writing assignments for the 2001 Annual Report. The report was finalized at the Committee's 11 March 2002 meeting and issued in April. At the meeting, the Committee discussed hydrometeorologic network changes, the Libby water supply forecast procedures, and plans to update normals from the 1961-1990 to 1971-2000 reference period. The Committee also attended most CRTOC meetings during the year. At the request of the CRTOC, the CRTHMC developed a work plan to review the potential for using the Ensemble Streamflow Prediction (ESP) methodology to produce water supply forecasts. Currently, official water supply forecasts are generated using statistically-based models. The CRTHMC met with CRTOC representatives in early October 2002 to discuss the work plan in more detail. Committee members generally send most station, communication, and data exchange referrals by e-mail throughout the year, with follow-up telephone conferences. Exchange of e-mail notes is the most practical and expedient method for implementing the referral process used by the Committee. Currently, individual committee members maintain their own files to archive Committee activity. Several items other than changes in hydrometeorologic station status were referred to Committee members during the course of the year. - In June, BC Hydro identified a problem that was introduced into its system for computing project inflow and outflow data. Corrections to inflow and outflow data from April through August were forwarded to the US Entity Section in September 2002. - BC Hydro has recently reviewed the ratings for outflow facilities at Arrow and Duncan. As a result of the review, BC Hydro expects that outflow and inflow computations from these projects will be backcalculated to 1984 in the coming year. Revised records will be forwarded to the US Entity for inclusion in future Treaty planning studies. - BC Hydro entered into an agreement with Environment Canada in May 2002 regarding support for specific non-Regional Climate Stations. BC Hydro agreed to fund the operation of those stations required by BC Hydro and Treaty and support stations required to plan, monitor, and operate the Columbia Treaty project facilities. - BC Hydro was served with a "Notice for Production of Documents" in a civil action in US Federal District Court in Southern California related to market events in 2001. In response to request 19 of the notice, the CRTHMC Canadian Chair provided copies of all e-mail correspondence with the BPA US committee co-chair. - The NWRFC experienced a technical problem accessing BC Hydro's FTP site in the summer of 2002. The problem was that NWRFC IP addresses were disappearing from BC Hydro's system and has since been resolved. #### SUMMARY OF CHANGES TO STATION NETWORKS The Committee was notified of several potential changes to hydrometeorological station networks in operating year 2002. In Canada, there were three changes in status for Treaty and support station that were referred to the Committee: - Gray Creek Lower Snow Course (report 1) - Gray Creek Upper Snow Course (report 2) - Mt. Cook Snow Course (report 3) Appendix E reports on the status of the station changes. No changes to stations located in the United States were referred to the Committee. The committee referred three other station changes within the Columbia basin – snow pack data for Upper Elk and Cook Forks snow course, and wind data for Duncan Lake Dam climate station. The committee determined that the referred stations were not required for Treaty planning, monitoring, or operations. ### Communication systems The CBT system, operated by the USACE in Portland, is the primary communications system for the Columbia River Treaty hydrometeorological network. The CBT system receives data directly from both USACE and USBR projects and consolidates data collected by other agencies into CROHMS. Data from BC Hydro, USACE, BPA, NWRFC, NRCS, USBR and from other automated and non-automated hydrometeorological networks are interfaced with CROHMS. The USACE updated the CBT manual in 2002. #### CBT The USACE operates the CBT system. CBT is one of several major subsystems of CROHMS. The CBT system provides the primary communications system between the hydropower projects and the operating agencies. The CBT system directly receives data from both the USACE and the USBR projects and consolidates project data collected by other agencies. The following is a list of the current "members" of the CBT system: - Avista Corporation, Spokane, WA - BC Hydro, Vancouver, B.C. - Bonneville Power Administration, Portland, OR and Vancouver, WA - Controlled Area Scheduling Service, Spokane, WA - Eugene Water and Electric Board, Eugene, OR - PacifiCorp, Portland, OR - Portland General Electric, Portland, OR - PP&L Montana, Butte, MT - Public Utility District No. 1 of Chelan County, WA - Public Utility District No. 1 of Douglas County, WA - Public Utility District No. 1 of Pend Oreille County, Newport, WA - Public Utility District No. 2 of Grant County, WA - Puget Sound Energy, Redmond, WA - Seattle City Light, Seattle, WA - Tacoma Power and Light, Tacoma, WA - USACE, Portland, OR, Seattle & Walla Walla, WA - USBR, Boise, ID Typically, data collection agencies transmit hourly data from their respective systems to the CBT system in one of two ways. Data are transmitted either via the CBT web page (HTTP/HTTPS protocols) or direct file transfer (FTP protocol). Specifically; - BPA, NWRFC, and USBR have direct private circuits to the USACE in Portland to transmit data for the Grand Coulee and Hungry Horse projects. They may use the Internet as an alternative circuit. - BC Hydro uses the Internet as its primary telecommunications circuit. Data from Canadian locations are first retrieved through a DOMSAT satellite downlink and are then forwarded to CBT via the Internet. Data collection agencies are also provided with dial-up accounts to the USACE. These accounts allow access the CBT system over standard public telephone circuits in the event that the private circuits and the Internet are unavailable. Information posted to the CBT web pages for retrieval by the CBT community is accessible only through secure, encrypted transmissions. Public access to the CBT system is not permitted. The CBT system operates much like an e-mail server. Each arriving message is coded with a list of addressees targeted to receive the message. The content of the message is a text field containing the data coded in "CBT Format", a convention adapted and used by the operating agencies across the Pacific Northwest since 1957. The CBT computer in Portland re-posts each message to the appropriate CBT web page of each agency. It simultaneously forwards the data to CROHMS and to BPA's RODS system. #### OTHER COMMUNICATIONS SYSTEMS Other communications systems and networks transmit data into CROHMS. The NRCS transmits data from SNOTEL stations to the NWRFC in Portland. The NWRFC then forwards these data to the USACE's CROHMS system. Streamflow data for sites in the United States are retrieved from the USACE's DOMSAT satellite downlink and input directly to the CROHMS system. Some data collection agency or other data sources have expanded their communications systems to include Web pages, anonymous FTP, and NOAA Port satellite downlinks to supplement communication through the traditional CBT and CROHMS systems. #### **CROHMS** CROHMS is the central system for the collection and redistribution of hydrometeorological data used in support of the operations of the Treaty projects. CROHMS computers and databases reside in Portland, Oregon, and are maintained and operated by the USACE. A number of agencies, including BC Hydro, BPA, the NWRFC and the NRCS, exchange data with CROHMS. ### Data exchange Data exchanged among operational projects and entity agencies may be categorized according to the type of data and the frequency of transmission. Types of data include project data, weather and streamflow data, forecasts, as well as reports and messages. The frequencies of transmission may be hourly, daily, or monthly. The following sections summarize data exchange categories. #### HOURLY PROJECT DATA REPORTS These reports include hourly project data for the following hydropower projects: - Libby - Albeni Falls - Grand Coulee - Hungry Horse - Dworshak - The Dalles The CBT system is used to send the following data to CROHMS each hour. - Inflow - Outflow - Spillway flow - Reservoir and tailwater elevations - Generation #### **DAILY PROJECT DATA REPORTS** Daily project data reports are sent to CROHMS just after midnight using the CBT system. The reports include project data for the following hydropower projects: - Libby - Albeni Falls - Grand Coulee - Hungry Horse - Dworshak - The Dalles Reports include the following data: - Instantaneous and daily average inflow - Daily average outflow - Daily average spillway flow - Day-end reservoir and tailwater elevations - Daily total generation data Upon referral with the US Entity Section during the year, BC Hydro discontinued sending 8 a. m. streamflow data for the Similkameen
River at Hedley, Okanagan River at Penticton, South Slocan River at Crescent City, and Columbia River at Birchbank in November 2001. These data are available directly from the Water Survey of Canada at URL http://scitech.pyr.ec.gc.ca/waterweb/. #### METEOROLOGICAL DATA REPORTS Meteorological data reports, sent to CROHMS by mid-morning each day, typically include the following: - Maximum daily temperature - Minimum daily temperature - Instantaneous temperature - Incremental or accumulated precipitation Weather data from hydropower projects and Canadian stations are sent to CBT. Alberta Environment sends precipitation data for one station directly to the USACE via e-mail. Weather data for other stations in the United States are collected by the NWRFC and transferred to the USACE using FTP over a dedicated circuit. #### **SNOW DATA REPORTS** Daily SNOTEL data and monthly snow course data for United States stations are collected by the NRCS and transmitted to the NWRFC. The NWRFC pulls snow pillow data for Canadian sites from British Columbia's MSRM web site. The USACE accesses snow data directly through its circuit to the NWRFC. #### RESERVOIR CONTROL CENTER MESSAGES Operational messages and instructions for project operations are sent out to the projects from the USACE Reservoir Control Center throughout the day or night as needed. Daily flow forecasts submitted by the NWRFC are also included. These messages are distributed using the CBT system. #### **BPA** MESSAGES Dedicated circuits between USACE and BPA use FTP to send and receive BPA messages on the CBT. Messages include: - Operational messages - Generation schedules - Grand Coulee forecasts - PNCA Entitlements #### WATER SUPPLY FORECASTS Volume runoff forecasts are exchanged by e-mail and posted to the web sites of the originating agencies for review and coordination with other Treaty participants. #### 2002 ANNUAL REPORT ### Appendix A Introduction to the Committee terms of reference² The Columbia Treaty between Canada and the United States of America relating to cooperative development of water resources of the Columbia River Basin was jointly signed by the heads of the respective Governments on January 17, 1961. Final ratification of the Treaty occurred when Canada Ratified the Treaty on September 16, 1964. Article XIV, Arrangements for Implementation contains: - 2. In addition to the powers and duties dealt with specifically elsewhere in the Treaty, the powers and duties of the entities include: - e. The establishment and operation of a hydrometeorological system as required by Annex A, 15 ² The text of this appendix is copied from the original 1967 document. #### Annex A, Principles of Operation states: 2. A hydrometeorological system, including snow courses, precipitation stations and streamflow gauges will be established and operated, as mutually agreed by the entities and in consultation with the Permanent Engineering Board, for use in establishing data for detailed programming of flood control and power operations. Hydrometeorological information will be made available to the entities in both countries for immediate and continuing use in flood control and power operations. In March of 1965, an International Task Force on Hydrometeorological Network, Columbia River Treaty was appointed to recommend establishment and operation of the Hydrometerological Network and procedures for exchange of information between the two Entities. Each of the Entities was guided by the following instructions: - A In collaboration with the respective Section of the task force, participate in the following activities: - 1 Recommend additions to the present hydrometeorological network to provide information essential to the operation of the Treaty storage to achieve the benefits contemplated by the Treaty which will: - a Provide current data on reservoir and streamflow conditions. - b. Provide sufficient information for forecasting streamflow on a longrange (seasonal), medium range (10 days to a month or two), and shortrange (up to 10 days) basis to meet the operational criteria of each project. 2 Recommend establishment and operation of a communication system for timely reporting of all hydrometeorological factors to meet operational and forecasting requirements. This system should utilize existing facilities where possible, and new facilities should be recommended where needed. - 3 Review the network from time to time and recommend additions to or deletions from facilities to ensure peak network efficiency. - 4 Prepare reports and recommendations to the entities from time to time as appropriate. - B. In addition, the Entities shall be responsible for the following: - 1 Prepare such interim or supplemental reports as may be needed to adequately inform the Entities on significant developments, alternative considerations, and progress. - 2 Coordinate activities as needed with the other task forces. - In developing the required network facilities, seek technical advice and obtain technical assistance, as necessary, from Canadian and other United States Agencies such as the Geological Survey, Soil Conservation Service, and the National Weather Service as well as within your own agencies, B.C. Hydro and Power Authority, the Bonneville Power Administration, and the Corps of Engineers. 4 Provide the Entities with copies of all correspondence, reports and drafts of reports, minutes of meetings, and distribution of all material. The International Task Force was in operation from 1965 through September 19, 1968. During this period, recommendations were prepared and subsequently adopted by the Entities with the concurrence of the Permanent Engineering Board. These recommendations established the basic hydrometeorological network of stations required by the Entities under the Treaty to provide data necessary for the operation of the Treaty projects. These were termed "Treaty facilities." The Entities agreed on October 23, 1967, to a definition for other hydrometeorological stations and communications not considered elements of the Treaty hydromet system but necessary for operational forecasting for the Columbia River. These were termed "supporting facilities." On September 19, 1968, the United States and Canadian Entities agreed to abolish the Task Force. The Hydrometeorological Committee was established at the same time. The terms of reference that follow outline the responsibilities given to the Committee at that time. This document will be updated from time to time as changes occur in hydrometeorological requirements or facilities listings. #### 2002 ANNUAL REPORT ### Appendix B Terms of reference for the CRTHMC May 20, 1968 #### 1 - GENERAL The Columbia River Treaty Hydrometeorological Committee will be composed of representatives of each Entity. The Committee will recommend the establishment of the Columbia River Treaty Hydrometeorological System. This system (hereinafter called "Treaty facilities") and the supporting facilities thereto are defined in an agreement between the Canadian and United States Entities dated October 23, 1967, as follows: #### a <u>Treaty facilities</u> 1 The Columbia River Treaty Hydrometeorological System shall consist of new and existing streamflow and reservoir gauges, snow courses, meteorological stations, and other related hydrometeorological data-collecting facilities a plan for methods and frequency of reporting, and a communication system to provide information for the operation of Duncan, Arrow, Mica and Libby reservoirs. It shall include hydrometeorological stations which provide operational and forecasting data relevant to the flow of the Columbia River at Birchbank, British Columbia, or at an equivalent streamflow gauge, and in addition, certain key streamflow and reservoir gauges on the Columbia River downstream from Birchbank and [certain key streamflow and reservoir gauges] on the Clark Fork - Pend Oreille tributary. - 2 All stations included in the System will be as agreed from time to time by the Entities in consultation with the Permanent Engineering Board. - 3 Additions to or deletions from the System will be subject to mutual agreement by the Entities with the objective of assuring continued operation of the system. #### b Supporting facilities - 1 It is desirable to identify other hydrometeorological stations and communications, not considered as elements of the system, which provide information for operational forecasting for the Columbia River. - A list of the hydromet stations and communications referred to in (1) above will be maintained by the Entities and all elements included in the list will be identified as "supporting facilities." 3 Each Entity will make reasonable effort to assure the continued operation of supporting facilities located in its own country. #### c <u>Supplemental data</u> Available hydrometeorological data from any part of the Basin required by either Entity from time to time will be provided by the other Entity on request. #### 2 - COMPOSITION OF THE COMMITTEE The Committee will be composed of a United States Section and a Canadian Section. The members of each Section will be designated by their respective Entity. One member of each Section will be formally designated as chairman of the Section. #### 3 - Duties of the Committee The duties of the Committee will include the following, subject to modification and addition as may be deemed appropriate by the Entities from time to time. #### i Governing Treaty facilities: - a Review existing hydrometeorological facilities and where necessary recommend additions and improvements in order to develop a hydrometeorological system which will: - 1 Provide current data on reservoir streamflow conditions. - 2 Provide sufficient information for forecasting streamflow to determine operation of the Treaty projects. - b Recommend establishment of communication for timely reporting of hydrometeorological information to meet operation and forecasting requirements.
Existing communication facilities should be used where adequate and new facilities should be recommended where needed. - c Recommend a plan for methods and frequency of reporting. - d Review the system from time to time and recommend additions or deletions of Treaty facilities and to insure peak network efficiency. #### ii Governing supporting facilities: Recommend other existing hydrometeorological stations and communications not considered as Treaty facilities for inclusion by the Entities in a list of "supporting facilities." - iii Prepare annual reports reviewing the Committee's activities for the preceding year and such other reports and recommendations to the entities from time to time as appropriate. - iv In the event of any substantial disagreement between the United States Section, the Chairmen of the Canadian and United States Sections will immediately refer the matter to the respective Entities through the Manager, Canadian Entity Services and the Staff Coordinators for instructions. Consult, and coordinate its work, with the Columbia River Treaty Operating Committee. In addition, each Section will be responsible to its respective Entity for the following: - a Prepare such interim or supplemental reports as may be needed to keep the appropriate Entity informed on significant developments, alternative considerations, progress, and operation of the Treaty facilities and supporting facilities. - b Coordinate activities as needed with the appropriate Section of other Columbia River Treaty committees. - c In determining and reviewing the required Treaty facilities and supporting facilities, seek technical assistance as necessary from other agencies in the appropriate country. - d Provide the appropriate Entity with copies of all correspondence, reports, and drafts or reports, minutes of meetings, and the distribution of all material. #### 2002 ANNUAL REPORT ### Appendix C Hydrometeorological data networks Most hydrometeorological data required for the operation of the Columbia River Treaty are collected by various federal, provincial, and state agencies. Data collection agencies include: - Alberta Environment - BC Ministry of Sustainable Resource Management Water Inventory Division - Meteorological Service of Canada Atmospheric Monitoring Division - Meteorological Service of Canada Applications and Services - Meteorological Service of Canada Water Surveys Division - US Army Corps of Engineers - US Bureau of Reclamation - US Geological Survey - US Northwest River Forecast Center - US Natural Resources Conservation Service - Water Survey of Canada Several electric utilities also collect and provide hydrometeorological information. - Aquilla (formerly Utilicorps Networks Canada, formerly West Kootenay Power and Light) - Avista - BC Hydro - Bonneville Power Administration - CASSO Corporation - Chelan PUD - Douglas PUD - Grant PUD - Idaho Power - Montana Power - PacifiCorp - Pend Oreille PUD - PP&L Montana #### 2002 ANNUAL REPORT ### Appendix D Models and planning studies Several forecasting and operational models require the input of hydrometeorological data. These models are used to forecast seasonal water supply or daily inflows, or to plan the operation of Treaty facilities for power production or flood control. The following sections briefly describe these models. #### **ASSURED OPERATING PLAN** The Entities jointly prepare an Assured Operating Plan (AOP) each year for the sixth succeeding "operating year". For purposes of the AOP, the operating year is defined as August 1 to July 31. The AOP optimizes the system generation potential, with and without Treaty storage considered. The AOP also provides the Entities with essential information for effective operational planning of their respective power systems that are dependent on or coordinated with the operation of Canadian storage. Downstream benefit computations are prepared in conjunction with the AOP. The computations define the downstream power benefits in the United States from Canadian storage five years in advance for each year in which the Treaty is in force. #### **DETAILED OPERATING PLAN** Each year, the US Entity, in consultation with the Canadian Entity, performs system regulation studies to develop a Detailed Operating Plan (DOP) for Canadian Treaty storage reservoirs, the whole of Canadian Treaty storage, and for Libby reservoir. The DOP is normally developed based on the respective AOP for that operating year. Planning for the DOP begins in the fall, with the final Canadian Entity data submittal made by 01 February, prior to the start of the next August-to-July operating year. #### **ACTUAL ENERGY REGULATION** The Pacific Northwest Coordination Agreement (PNCA) was created in 1964 to coordinate the utilities and agencies controlling generating facilities in the region for the purpose of optimizing power production while fulfilling project constraints and non-power uses of the system. The PNCA requires each party to determine their Actual Energy Capability (AEC) given their short-term operations. The party's AEC determines each party's interchange, in-lieu, or provisional storage-draft rights or obligations. Beginning in 1977, PNCA parties decided to have the Northwest Power Pool (NWPP) use a single hydro model to simulate the coordinated hydro system to determine each parties AEC and rights and obligations. This hydro model is called the Actual Energy Regulation (AER). The AER is run at least twice a month and may be run more often at the request of a PNCA party. The AER uses the following input to determine the desired storage operation and to specify the hydroelectric component of each party's AEC: - planned loads - resources - operating criteria, including Endangered Species Act (ESA) operations - current unregulated streamflow forecasts - flood control rule curves - and operating rule curves Only unregulated streamflow forecasts, hydro-independent generation, variable refill curves, and upper rule curves are changed. All other operating data in the AER study, including firm and secondary loads, thermal and miscellaneous resources, non-power requirements, other plant and operating data, and other applicable rule curves, come from the applicable Assured Operating Plan, as modified by the Detailed Operating Plan or other agreement of the Operating Committee. The USACE submits monthly streamflow forecasts for their projects to the NWPP and BPA provides all other Federal/Canadian project monthly streamflow forecasts. During the January-July period, all monthly shaping of the streamflow forecasts maintain the forecast seasonal volumes supplied by the project owners. The NWPP then combines the USACE and BPA forecasts with other non-Federal project streamflow forecasts for use in the AER model. The draft rights and obligations of the Canadian projects at Mica, Arrow, and Duncan are determined through the Treaty Storage Regulation (TSR) process and then inserted into the AER studies. While the TSR is very similar to the AER, it does not incorporate ESA operations. ### TREATY STORAGE REGULATION The Columbia River Treaty was implemented in 1964 to coordinate the operation of Canadian Columbia basin reservoirs for optimum power and flood control benefits downstream in Canada and the United States. A Detailed Operating Plan (DOP) is prepared annually according to the Treaty for this purpose. The DOP requires a TSR study as input to determine the monthly storage rights and obligations for the Canadian reservoirs Mica, Arrow, and Duncan. The TSR also provides mid-month storage rights and obligations for the months of April and August. The TSR is similar to the AER, except that ESA-related operating constraints are not considered and hydro system power loads are estimated slightly differently. The TSR uses the following input to determine basic operating requirements for Canadian Treaty reservoirs: - DOP operating criteria for 76 coordinated system projects in the United States and Canada - current unregulated streamflow forecasts - flood control curves - refill curves Only unregulated streamflow forecasts, hydro-independent generation, variable refill curves, and upper rule curves are changed. All other operating data in the TSR study, including firm and secondary loads, thermal and miscellaneous resources, non-power requirements, other plant and operating data, and other applicable rule curves, come from the applicable Assured Operating Plan, as modified by the Detailed Operating Plan or other agreement of the Operating Committee. The USACE submits monthly streamflow forecasts for their projects to the NWPP and BPA provides all other Federal/Canadian project monthly streamflow forecasts. During the January-July period, all monthly shaping of the streamflow forecasts maintain the forecast seasonal volumes supplied by the project owners. The NWPP then combines the USACE and BPA forecast with other non-Federal project streamflow forecasts and makes the data available for use in the TSR model. The TSR is normally run twice per month to provide the operation of Canadian reservoirs for the AER. Either of the Canadian or United States Entities may request that the TSR be run more often. Actual operation of the Canadian Treaty storage projects is established by weekly Entity agreements that are based on the TSR end-of-month storage results, combined with supplemental operating agreements or flood control requirements. TSR operating information for Libby is provided at the weekly meeting for coordinating operations on the Kootenay, but is not used for Libby's actual operation. #### **HYDSIM** HYDSIM is a reservoir simulation model that was developed for planning the seasonal operation of the Northwest hydropower system. The Canadian and United States Entities use HYDSIM for developing the AOP, DOP, and TSR studies carried out throughout the year. HYDSIM regulations are divided into 14 intervals during the water year; twelve monthly periods, with both April
and August divided into two. Input to the model includes plant characteristics, operational data, historic streamflows and rule curves that guide the operation. #### FLOOD CONTROL OPERATING PLAN The USACE is responsible for Columbia River Treaty flood control operations. The FCOP was developed under provisions of the Columbia River Treaty. It prescribes criteria and procedures by which the Canadian Entity will operate Mica, Duncan, and Arrow Reservoirs. Libby Reservoir is included in the FCOP to meet the Treaty requirement to coordinate its operation for flood control protection in Canada. The operation of Treaty storage reservoirs is intended to reduce stages at all potential flood damage areas in Canada and the United States to non-damaging levels where possible. During large flood events where flood damage can not be avoided, the plan aims to control levels to minimize damage. The FCOP addresses both local and system flood control requirements. Local flood control relates to areas immediately downstream of project reservoirs. System flood control relates to overall system storage operations that reduce flood potential in the Portland, Oregon / Vancouver, Washington river reach. Flows on the Columbia River at The Dalles are used to prescribe system flood control requirements. The operation of Canadian storage for system flood control requirements is integral and has been factored into the FCOP. The plan develops operations for the evacuation and refill phases through the winter and spring. Operational requirements for system flood control are determined through the use of storage reservation diagrams, current operations guidance, and flood stage levels at damage centers. The USACE uses self-generated seasonal water supply forecasts for Libby and Dworshak. Other water supply forecasts are provided as follows for the USACE to determine upper rule curves: - BC Hydro provides water supply forecasts for Mica, Arrow, and Duncan. - The USBR provides forecasts for Hungry Horse. - The NWRFC provides forecasts for all remaining points. The NWRFC provides real-time in-season forecasts to assist the USACE refill project reservoirs. The FCOP was initially developed in 1965 and first published in 1972. Changes to the Libby evacuation flood control curve were made in 1989. The USACE, Northwestern Division, North Pacific Region recently published a revised plan in October 1999, entitled "Columbia River Treaty Flood Control Operating Plan". Revisions were made in response to changes in flood control criteria and development of new evaluation procedures. ### WATER SUPPLY FORECASTING Columbia River Treaty seasonal water supply forecasts are required for two reasons. First, the forecasts are required to plan the evacuation of storage space from Treaty reservoirs for flood control purposes prior to the onset of the spring freshet (USACE, 1999). Second, they are required to plan reservoir operations to ensure a reasonable likelihood of refill following the spring freshet. Seasonal water supply forecasts are generally made over a period of time when snowmelt runoff predominates. Common forecast periods for Treaty projects are from the forecast date to the end of July, or to the end of September. Forecasts are made on the first of each month, usually starting 01 January³. The last seasonal inflow forecasts are made on 01 August of each year for Canadian projects and 01 July for US projects. Seasonal water supply forecasts can be based on either statistical procedures or conceptual hydrological model simulations. Currently, seasonal water supply forecasts used for calculating upper rule curves are based on statistical procedures. ### STATISTICAL PROCEDURES Statistical procedures are usually developed using multiple linear regression techniques. Forecast water supply to a reservoir over the coming spring and summer period is regressed against a variety of predictor variables. These ³ The NWRFC prepares three forecasts each month between late December and June. These forecasts include early-bird, final, and mid-month forecasts. The early-bird and mid-month forecasts use preliminary data from a subset of stations as input. Final forecasts use observed data through the end of the previous month for all stations in the forecast procedure. The USACE uses final forecasts to develop flood control operations and modify reservoir elevation targets each month. Other groups use the water supply forecasts to plan power production and irrigation needs. variables typically include data from a number of hydrometeorologic stations. Data are used to compute predictor variables, such as mountain snow water equivalent and accumulated valley-bottom precipitation. In addition, antecedent conditions, such as fall precipitation or winter base flow, are commonly used as predictor variables. The most recent statistical forecasts for Mica, Arrow, and Duncan Reservoirs were developed by BC Hydro in 1997 (Luo, 1997). The USACE recently revised statistical forecast procedures for Libby Reservoir (USACE, 1999). The NWRFC in Portland, Oregon prepares water supply forecasts for sub-basins throughout the Columbia River Basin during the winter and early spring in cooperation with the NRCS, USACE, and others. Agencies rely on hydrometeorological and snow survey station data throughout the United States and Canadian portions of the basin. Statistical procedures produce "official" forecasts used to determine storage space evacuation from Treaty reservoirs required for flood control and refill criteria. #### ENSEMBLE STREAMFLOW PREDICTION A conceptual hydrological model may be used to forecast water supply using a procedure known as Ensemble Streamflow Prediction, or ESP. Once initial watershed conditions, such as snowpack and groundwater storage, are determined on the forecast date, historical weather data are input to the conceptual model, one year at a time, beginning each time with the current initial basin-state conditions. A series of synthetic hydrographs, as shown in Figure 1, is produced. By assuming that each hydrograph simulation has an equal likelihood of occurring in the coming season, the synthetic series generated is analyzed to produce a probabilistic forecast of seasonal water supply over the coming season. BC Hydro uses the UBC Watershed Model (UBCWM) to simulate flows required for the ESP procedure, whereas BPA and NWRFC use the NWS River Forecast System (NWSRFS). Forecasts produced using ESP techniques are generally used by utilities as input to other models to determine probable outcomes of operations on hydro generation and fisheries operations. They also provide a valuable comparison to forecasts produced using statistical procedures. Figure 1 Series of synthetic hydrographs produced using the ESP forecasting procedure. Forecast date is 01 August in the example The two forecasting methods have advantages and disadvantages over each other. One advantage of statistical procedures is that they are relatively easy to develop. They are also entirely objective; that is, forecasts are deterministic and consistent, regardless who prepares them. ESP forecasts produced by conceptual models may be subjective. For example, individual forecasters may adjust a model's basin state conditions differently in order to get the model to "track" observed flows to the forecast date. The subjective adjustments to basin state conditions can lead to different water supply forecasts. However, forecasts produced using conceptual models provide the best means available today for disaggregating seasonal runoff volumes into daily runoff distributions over the forecast period. These distributions are invaluable input to operational models required for Treaty projects. #### INFLOW FORECASTS #### DAILY AND WEEKLY BC Hydro, BPA, and NWRFC independently produce daily inflow forecasts to assist in planning daily and weekly operations of Treaty facilities. The NWRFC provides the unregulated inflow forecasts to the USACE. BC Hydro uses FLOCAST and the UBC watershed model to produce daily reservoir inflow forecasts. FLOCAST was developed in-house in the mid-1970's based on algorithms of the Stanford watershed model. The UBCWM is built into BC Hydro's River Forecast System (RFS) that was put into operation in 2002. Basin-state conditions, such as snow water equivalent and groundwater, are simulated in both models up to the day before the forecast date. Daily total precipitation, maximum temperature, and maximum freezing level are the model's forcing variables. Observed forcing variables over the past five days and quantitative precipitation, temperature, and freezing level forecasts (QPFs) over the coming five days are input to the model to forecast reservoir inflows over the combined ten-day period. At BC Hydro, hydrologists produce five-day inflow forecasts for Mica, Arrow, and Duncan Reservoirs by noon of each working day. BC Hydro plans to eventually phase out the use of FLOCAST in 2003. The US Entities produce independent daily forecasts for Canadian and US projects from Mica to Bonneville Dam and on the Willamette River. BPA and NWRFC use the NWSRFS model to produce daily reservoir inflow forecasts. The NWSRFS is a lumped physically-based model that uses mathematical equations to represent physical processes of the hydrologic cycle. The system consists of components that model snowpack, soil moisture, time of concentration of flow, reservoir operations, and river routing. The NWRFS has been calibrated for 178 sub-basins in the Columbia River basin above The Dalles. During calibration, as many as 40 years of mean areal precipitation and temperature data were used to develop model parameters. In operational use, both the NWRFC and BPA use the NWSRFS independently. Observed and forecast weather data are input to the model. Precipitation and temperature data over the past 5 to 10 days are input. Hydrologists may make minor adjustments to model states and inputs to improve the
simulated streamflow to better match observed flows. BPA meteorologists forecast future precipitation and temperature that hydrologists input to the model to generate streamflow forecasts. BPA produces daily forecasts in 6-hour time steps out 14 days into the future. The NWRFC varies its forecast period from 3 to 10 days, depending on the time of year and circumstances. Hydrologists use model output as primary guidance when issuing an inflow forecast. However, forecasters often use other available information and data, as well as their own experience, to adjust model output before issuing a forecast. The USACE accepts streamflow forecasts from the NWRFC and regulates inflows to meet project objectives. #### MONTHI Y Monthly inflow forecasts are required for the AER and TSR models. Currently, the USACE and BPA provide these forecasts to the AER and TSR modelers. During the January-to-July period, these monthly forecasts preserve the official water supply volume forecasts. In addition, the USACE and BPA submit the monthly hydrograph shape. The hydrograph shape is subject to coordination with the Entities. During the August-to-December period, the monthly shape and overall volume is provided by the submitting agency in coordination with the entities. Preparing monthly inflow forecasts is more subjective in many respects than preparing daily or water supply forecasts. The monthly shape is derived using various tools and models. The USACE uses a combination of the NWRFC's models and historic percentages. During the January-to-July period, the USACE uses the unregulated inflows provided by the NWRFC for the first 45 days, then enters the residual volume into a spreadsheet which evenly applies the same percentage to the remaining months through the end of July to derive the correct overall volume. The NWRFC forecast provided for the first 45 days or so is based on their Columbia Winter Specified (CWS) procedure during most of the year, except during the spring runoff season (approximately April to July) when the SSARR model is the basis for their forecast shape. During the August-through-December period, the USACE bases the monthly shape on the NWRFC CWS model. The CWS model is a simple graphic representation of the observed streamflow data with which forecasters "specify" how they think a trend will continue. The CSW process is usually designated 45 days into the future, but can be taken out 120 days if forecasters require it. The SSARR model simulates soil, snow, and stream channel conditions. During the Aprilthrough-July period SSARR is used as a snow depletion model and is tied to the statistical water supply volume forecasts. The model uses a designated temperature sequence to produce a single streamflow runoff forecast. BPA also uses a combination of models and tools to arrive at monthly hydrograph shape. During the January-through-July period, BPA updates a weekly time-step spreadsheet with observed flows on a weekly basis. Forecasters may distribute the official volumes for each sub-basin in one of several ways: - Apply a historical average shape. - Apply the average shape of NWSRFS ESP traces - Extend the current hydrograph trend of observed flows - Use historical month-to-month serial relationships. - Use a blend of the above procedures. Whichever method is used, the overall volume is maintained to match the official water supply forecasts. During the August-to-December period, monthly shaping only needs to be extended about two months into the future. Therefore, trending, historical month-to-month serial relationships, and ESP traces are usually used. # COLUMBIA RIVER TREATY HYDROMETEOROLOGICAL COMMITTEE #### 2002 ANNUAL REPORT # Appendix E Changes to the hydrometeorological network in 2002 The following pages document changes to the Columbia River Treaty Hydrometeorological Network in operating year 2002. Reports for Canadian stations include: - Gray Creek Lower Snow Course (report 1) - Gray Creek Upper Snow Course (report 2) - Mt. Cook Snow Course (report 3) Changes to the operation of the following stations were also referred to the Committee. However, upon review, the Committee did not consider the stations to be a Treaty or support station. - Upper Elk snow course (2C06) was discontinued due to impact of logging activity at the site. The station was used only qualitatively by the NWRFS. - A snow pillow was installed at Cook Forks snow course site. An overlapping operation of both the existing snow course and snow pillow will continue for the next few years, after which, the snow course will be discontinued. No changes were reported in 2002 for stations in the United States. Report No. 1 STATION INFORMATION New _ Existing <a> Station Name Gray Creek Lower Snowcourse Station ID **DCP SnowPillow AES** SnowCourse 2D05 wsc Other (specify) **Measurement frequency** Jan 1, Feb 1, Mar 1 Apr 1, May 1 **AGENCY CRT USE** Operator Funder AOP Can Gov BC Gov BCH TSR™ Aquila FCOP V AltaEnv Operations Other (specify Other (specify) **SUGGESTED CHANGES** Initiating Agency New addition Initiating Date February, 2002 Decommission Funding Cut Contact Dan Egolf Relocation Measurement Frequency Other (specify) Summary UtiliCorp (now Aquila) indicated that they don't see direct benefit from snow measurements at the Gray Creek Upper Snowcourse and therefore decided to discontinue the funding of snow survey at this site. Note that this represents a reversal of their decision in 2001 (see Report No 5, 2001) to continue funding of a scaled-down annual snow measurement schedule. With the funding issue pending, no measurements were taken in 2002. Report No. 1 | | The production of the state | |-------|---| | COR | RESPONDENCE LOG | | | Notify Entity | | | BPA ✓ | | | | | | USACE ✓ | | | Date of Notification see 2001 Annual Report | | | Bate of Notification Sec 2001 Annual Report | | | Summary | | | Summary | | | | | | Extensive discussions between BC Hydro and Aquila ensued in trying to resolve the funding issue. | SOL | UTIONS | | | | | | No action required ✓ | | | Modify models_ | | | Modify models Station modification | | | Station relocation | | | | | | Pending | | | Change measurement frequency to | | | | | | Change operating agency to ▼ | | | Change funding agency to ▼ | | | | | | Summary | | | | | | In November 2002, Aquila agreed to continue funding for the 2003 snow survey season. | | | in rovember 2002, require agreed to continue randing for the 2003 show survey season. | DEV / | ISW AND ADDROVAL | | KEV | IEW AND APPROVAL | | | | | | | | | | | | | | F | Reviewed and approved at the CRTHMC meeting on date: Oct 7-9, 2002 in Portland. | | • | Report No. 2 | | Nepolt No. 2 |
---|---| | TATION INFORMATION | | | New 🗆 | Existing 🔽 | | Station Name Gray Creek Upper Snowcoo | urse | | Station ID | | | DCP | SnowPillow | | AES | SnowCourse 2D10 | | WSC | Other (specify) | | Measurement frequency | , | | Jan 1, Feb 1, Mar 1 Apr 1, I | May 1 | | | | | AGENCY | CRT USE | | Operator Funder | 51(1 002 | | Can Gov | AOP | | BC Gov | DOP | | BCH 🔲 | TSR | | | FCOP FCOP | | Aquila 🔲 🔽 | | | AltaEnv | Operations V | | Other (specify) | Other (specify) | | | | | | | | OCCUPATION OF THE PROPERTY | | | GGESTED CHANGES | | | Initiating Agency Aquila | New addition <u></u> | | Initiating Date February, 2002 | Decommission | | Contact Dan Egolf | Funding Cut | | Oomaot Buil Egon | Relocation | | | Measurement Frequency | | | Other (specify) | | | Other (specify) | | | | | Summary | | | | | | UtiliCorp (now Aquila) indicated that they do | n't see direct benefit from snow measurements at the Gray | | | ed to discontinue the funding of snow survey at this site. | | ** | cision in 2001 (see Report No 6, 2001) to continue funding of | | | edule. With the funding issue pending, no measurements | | | edule. With the runding issue pending, no measurements | | were taken in the 2002. | Report No. 2 | CORRESPONDENCE LOG | | |---|-----| | Notify Entity | | | BPA™ | | | USACE ✓ | | | Date of Notification see 2001 Annual Report | | | Summary | | | Extensive discussions between BC Hydro and Aquila ensued in trying to resolve the funding issue. | | | | | | SOLUTIONS | | | No action required Modify models Station modification Station relocation Pending Change measurement frequency to Change operating agency to Change funding agency to Summary In November 2002, Aquila agreed to continue funding for the 2003 snow survey season. | | | | | | REVIEW AND APPROVAL | | | | | | | ٦ ! | | Reviewed and approved at the CRTHMC meeting on date: Oct 7-9, 2002 in Portland. | | | | | Report No. 3 **STATION INFORMATION** New _ Existing 🗹 Station Name Mt Cook Snowcourse Station ID DCP SnowPillow **AES** SnowCourse 1E02A WSC Other (specify) **Measurement frequency** Feb 1, Mar 1, Apr 1, May 1, May 15 and Jun 1 **AGENCY CRT USE** Operator Funder AOP Can Gov BC Gov DOP **BCH TSR FCOP** Aquila AltaEnv Operations Other (specify) Other (specify) Revelstoke local VOLCAST **SUGGESTED CHANGES** Initiating Agency MSRM New addition Initiating Date November 19, 2001 Decommission Contact Janis Wright Funding Cut Relocation Measurement Frequency Other (specify) **Summary** With the installation and commissioning of Mt. Cook Snowpillow in 1999, BC MSRM indicated the intention of operating Mt Cook Snowcourse for two to five more years to collect a reasonable length of overlapping records between the snowcourse and the pillow before discontinuing the snowcourse. | Report No. 3 | | |--|--| | CORRESPONDENCE LOG | | | Notify Entity BPA USACE □ Date of Notification November 19, 2001 | | | Summary A e-mail note was sent out by E. Weiss to N. Stephan of BPA and R. Turner of USACE regarding the proposed change. A reply from N. Stephan indicated that the proposed changes wouldn't impact BPA and RFC's modeling. | | | SOLUTIONS | | | No action required Modify models Station modification Station relocation Pending Change measurement frequency to Change operating agency to Change funding agency to Summary BCH requested, and MSRM reassured BCH, that the snowcourse be operated for at least three more years before decommissioning. | | | REVIEW AND APPROVAL | | | REVIEW AND AFFROVAL | | | Reviewed and approved at the CRTHMC meeting on date: Oct 7-9, 2002 at Portland. | | | | | # COLUMBIA RIVER TREATY HYDROMETEOROLOGICAL COMMITTEE ### 2002 ANNUAL REPORT ### Appendix F Correspondence Relevant correspondence in 2002 includes: CRTHMC 2002/05/16. ESP versus Statistical Forecasting Procedures, submitted to the CRTOC. # COLUMBIA RIVER TREATY HYDROMETEOROLOGICAL COMMITTEE Presentation to the CRTOC, 16 May 2002 ### ESP versus statistical forecasting procedures At the March CRTOC meeting, the committee asked the CRTHMC to develop and present a work plan to evaluate Extended Streamflow Prediction forecasting versus regression-based flow forecasts. Several benefits may be derived from using ESP forecasts to forecast water supply. - Individual forecast scenarios of daily runoff may be input to subsequent modeling studies to reflect uncertainty in future weather. Currently, an "expected volume runoff forecast" (mean), 95percentile, or WOWs are typically used in studies. - The conceptual watershed model, NWSRFS, is used to guide refill at projects. The snowpack put into the model frequently needs to be adjusted to produce the same volume of runoff as forecast using statistical procedures. If the NWSRFS is used to produce official water supply forecasts as well, there should be agreement between the refill and water supply volumes produced. - An ESP water supply forecasting procedure will likely lead to better consistency between mid-month, early-bird, and final water supply forecasts. #### DRAFT STUDY TERMS OF REFERENCE Through e-mail and telephone conversations, the committee has drafted the following terms of reference for a study to investigate the benefits of using ESP rather than statistical methods to forecast water supply. #### The committee will: - search literature that compares ESP with regression-based water supply forecasts. The search will focus on forecast accuracy, especially in snowmelt-driven basins and the potential for forecast bias - identify the current capability of Entity agencies to produce ESP forecasts. - identify the current capability of Entity agencies to make use of ESP forecasts to help operate Treaty reservoir storage. The committee will identify how ESP forecasts could be used for evacuation and refill, TSR, AER, and other studies. Certain questions may arise, like how to use ESP traces rather than WOWs in refill studies. - when forecasts are summarized to create an "expected forecast", identify an appropriate manner in which to express uncertainty in the forecast - identify the pros and cons of ESP and regression-based forecasts for Treaty requirements. Items for considerations will include determining impacts on CRT storage regulation and potential for "gaming". - recommend or not recommend the use of ESP as the official water supply forecasting procedure - if ESP procedures are recommended, develop a proposed policy / strategy / process for agreeing upon operational forecasts. When differences between NWRFC, other federal agencies and BC Hydro ESP forecasts exist, which forecast is official? How will official refill runs accommodate these differences? - if ESP procedures are recommended develop an implementation strategy. An assessment of results to confirm that forecasts are at least as good as those derived from statistical procedures will form part of this strategy ### RESOURCES AND SCHEDULING At present, Wuben Luo (Canadian Entity) and Ann McManamon (US Entity) have been identified to lead the work. The project would likely not start until late this summer. Duration of the work depends on project scope agreed to by the CRTOC and availability of staff and resources.